Analysis of a class of nonconforming finite elements for crystalline microstructures

نویسندگان

  • Petr Kloucek
  • Bo Li
  • Mitchell Luskin
چکیده

An analysis is given for a class of nonconforming Lagrange-type finite elements which have been successfully utilized to approximate the solution of a variational problem modeling the deformation of martensitic crystals with microstructure. These elements were first proposed and analyzed in 1992 by Rannacher and Turek for the Stokes equation. Our analysis highlights the features of these elements which make them effective for the computation of microstructure. New results for superconvergence and numerical quadrature are also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Framework for the A Posteriori Error Analysis of Nonconforming Finite Elements

This paper establishes a unified framework for the a posteriori error analysis of a large class of nonconforming finite element methods. The theory assures reliability and efficiency of explicit residual error estimates up to data oscillations under the conditions (H1)-(H2) and applies to several nonconforming finite elements: the Crouzeix-Raviart triangle element, the Han parallelogram element...

متن کامل

An adaptive finite element method for solving a double well problem describing crystalline microstructure

The minimization of nonconvex functionals naturally arises in material sciences where deformation of certain alloys exhibit microstructures. As an example, minimizing sequences of the nonconvex Ericksen-James energy can be associated to deformations in martensitic materials that are observed in experiments, [1, 2]. | From the numerical point of view, classical conforming and nonconforming nite ...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

A New Class of Higher Order Mixed Finite Volume Methods for Elliptic Problems

We introduce a new class of higher order mixed finite volume methods for elliptic problems. We start from the usual way of changing the given equation into a mixed system using the Darcy’s law, u = −K∇p. By integrating the system of equations with some judiciously chosen test spaces on each element, we define new mixed finite volume methods of higher order. We show that these new schemes are eq...

متن کامل

A Note on the Nonconforming Finite Elements for Elliptic Problems

In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m,n ≥ 1) is proposed in a canonical fashion, which includes the (2m−1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1) and the Adini element (m = 2). A nonconforming triangular finite element for the plate bending problem, with convergent order O(h)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 1996